Heterologous exchanges of the glycoprotein and the matrix protein in a Novirhabdovirus.
نویسندگان
چکیده
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are two salmonid rhabdoviruses replicating at low temperatures (14 to 20 degrees C). Both viruses belong to the Novirhabdovirus genus, but they are only distantly related and do not cross antigenically. By using a recently developed reverse-genetic system based on IHNV (S. Biacchesi et al., J. Virol. 74:11247-11253, 2000), we investigated the ability to exchange IHNV glycoprotein G with that of VHSV. Thus, the IHNV genome was modified so that the VHSV G gene replaced the complete IHNV G gene. A recombinant virus expressing VHSV G instead of IHNV G, rIHNV-Gvhsv, was generated and was shown to replicate as well as the wild-type rIHNV in cell culture. This study was extended by exchanging IHNV G with that of a fish vesiculovirus able to replicate at high temperatures (up to 28 degrees C), the spring viremia of carp virus (SVCV). rIHNV-Gsvcv was successfully recovered; however, its growth was restricted to 14 to 20 degrees C. These results show the nonspecific sequence requirement for the insertion of heterologous glycoproteins into IHNV virions and also demonstrate that an IHNV protein other than the G protein is responsible for the low-temperature restriction on growth. To determine to what extent the matrix (M) protein interacts with G, a series of chimeric pIHNV constructs in which all or part of the M gene was replaced with the VHSV counterpart was engineered and used to recover the respective recombinant viruses. Despite the very low percentage (38%) of amino acid identity between the IHNV and VHSV matrix proteins, viable chimeric IHNVs, harboring either the matrix protein or both the glycoprotein and the matrix protein from VHSV, were recovered and propagated. Altogether, these data show the extreme flexibility of IHNV to accommodate heterologous structural proteins.
منابع مشابه
Expression of the Herpes Simplex Virus Type 2 Glycoprotein D in Baculovirus Expression System and Evaluation of Its Immunogenicity in Guinea Pigs
Background: Herpes simplex virus type 2 (HSV-2) is highly prevalent and major cause of genital herpes in humans. The life-long nature of infection and the increasing prevalence of genital herpes imply that vaccination is the best strategy for controlling the spread of infection and limiting HSV disease. HSV glycoprotein D (gD) is one of the most important viral immunogen which has an essential ...
متن کاملP-77: Optimization of Ovine FSH Gene Expression in The Pichiapastoris System byRegulating The Culture Conditions
Background: Ovine follicle stimulation hormone (OFSH) is a pituitary glycoprotein and belongs to the family of glycoprotein hormones. This hormone plays a key role in the function of the reproductive system: it is essential for sertoli cell function and spermatogenesis in testis and it stimulates the growth of ovulatory follicles in females. Ovine FSH hormone is a heterodimeric hormone consisti...
متن کاملHeterologous Expression of Potato Virus Y Coat Protein, Isolate Pot187
Background: The advent of recombinant DNA technology has facilitated heterologous expression of proteins from various sources in different host systems including Escherichia coli. If a plant virus coat protein is expressed in the bacterium it can be used as the antigen for antibody preparation. Such a recombinant antigen preparation can be particularly useful where equipment such as ultracentri...
متن کاملAntifungal Activity of Heterologous Expressed Chitinase 42 (Chit42) from Trichoderma atroviride PTCC5220
The cDNA from the mycoparasitic fungus Trichoderma atroviride PTCC5220 encoding a 42 kDa chitinase (Chit42) was isolated. The nucleotide sequence of the cDNA fragment as having a 1263 bp open reading frame that encodes a 421 amino acid polypeptide, and a high homology was found withother reported Chit42 belonging to the Trichoderma sp. The 22 amino acid N-terminal sequence is a putative s...
متن کاملDevelopment of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum
Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 76 6 شماره
صفحات -
تاریخ انتشار 2002